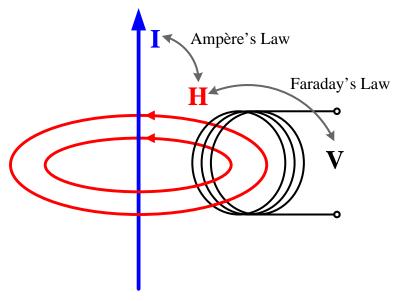
Inductive Power Transfer: A New Transportation Technology

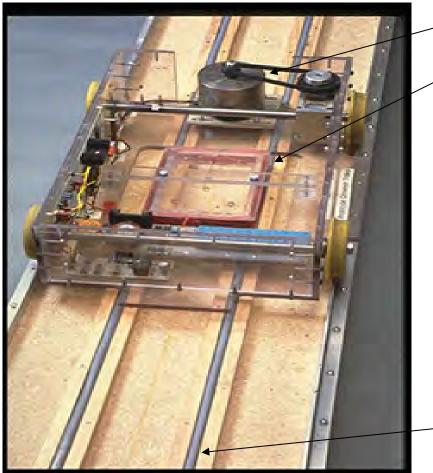
16-17 March 2016,

Wellington NZ

Presented by: Dist. Prof. Emeritus John Boys


Professors G. A. Covic and J.T. Boys Inductive Power Research Group Department of Electrical and Computer Engineering The University of Auckland, New Zealand

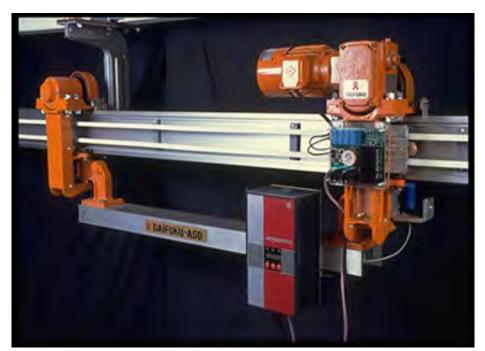
Inductive Power Transfer (IPT)


- The transfer of electrical power from one system to another, without wires.
- Reliable
- Tolerant of water, chemicals, and dirt.
 - But regarded as impossible for 200 years

1990: A first WPT System at the UoA.

Brushless DC Driving Motor

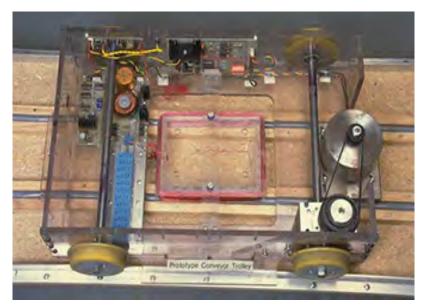
- Alignment non critical
- No power regulation
- Maximum 1 trolley/track
- Large pick-up coil
- Low efficiency But it worked!!!

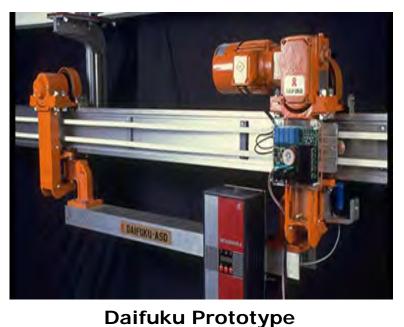

-100 pair telephone cables

- "Inductive Power Transfer cannot be done" (Jervis Webb):
 - Signals: Yes
 - Tooth-brushes: Yes
 - Real Power: No!
- Our background made it possible
 - power electronics,
 - resonant circuits,
 - electromagnetics

Daifuku wanted

- Power rating/secondary
- System Efficiency
- Delivery
- Special terms


- > 200 Watts each, all independent
- > 75%
- < 4 Months


Payment on completion

Assistance with components

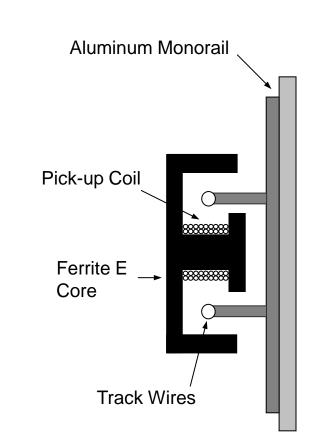
Prototype Comparison

Original System

Power rating	1W
Efficiency	<10%
# of Carriers	1
Load	75 kg
Speed	0.1 m/s
Track current	80A
Track length	3 m
Air-gap	2 mm

Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz

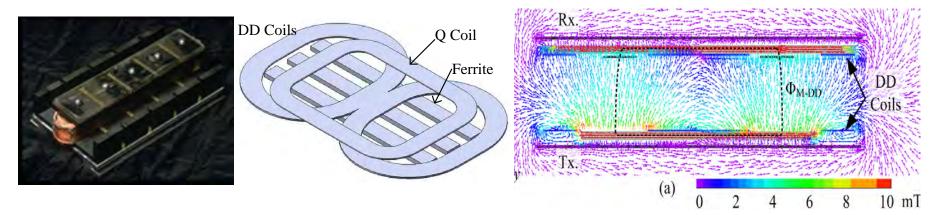
400 W
85%
3
250 kg
1 m/s
80A
25 m
4 mm



Prototype Operation

- Allowed movement
- Tolerant of misalignment.
- Unaffected by the environment

Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz



- "Even if power could be transferred control would be impossible"
 - Invented a new controller that allowed multiple independent vehicles on one supply
 - Filed 60+ patents, all licenced globally

- "Magnetic fields at VLF frequencies are difficult to manage or unsafe"
 - Developed field shaping methods operable over a wide frequency range
 - Our systems are low leakage and highly efficient

- Industry will never pick this up
 - "It is too risky to have any real chance of success" (MoRST – now MBIE)
 - Daifuku took up a licence in 1994 and sold systems within 12 months
 - Are the market leader in clean factory automation

Expanding the License base

- (1997-2010)
 - Conductix-Wampfler:
 - 31 Innovation:
 - Cabco:
 - Tracam:
 - Lantel:

Materials Handling and Buses Lighting Charging Kid Karts Security systems Flying carpets

Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz

Developing Long Term Relationships

- Required for successful technology transfer
 - Industry driven R&D they can sell
 - Up-front fee + licence royalty agreement + priority research
- On-going IP creation
 - Enables market protection
- Optimistic can do attitude
 - Listen to customer wants (even if think crazy & doesn't use your original idea)

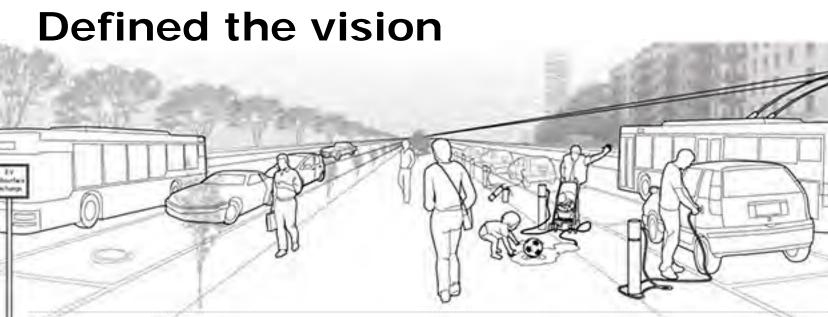
- "Despite industrial successes commercial EV systems are too difficult"
 - EV wireless charging is now a preferred option
 - Dynamic powering is under development
- HaloIPT formed over 3 years
 - Sold and relicensed after 1.5 years to Qualcomm
 - Large R&D funding secured for roadway power developments

Case Study: Forming HaloIPT

- 2007
 - Noted shift in market
 - Improved our magnetic designs
 - Floated concept ("kissing frogs")
 - Engaged licensees unsuccessfully
 - Engaged OEMS at EVS23 with support of Uniservices
- 2008
 - On going discussion with licensees
 - VOM (November)
 - Improved gap & tolerance, power
 - Low cost and low weight
 - Capable of one to many
 - Secured pre-seed accelerator funding
 - Requested Nov 08

IPT Wireless Charging System

- 2009 ٠
 - Defined our vision & difference
 - EVS24 showcase (funded by pre-seed)
 - Took on additional funded projects
 - Engaged with potential seed investors and funders



Vehicle controller

Charger: 2kW single phase supply Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz

220mm airgap

IPT street

Safe and Durable

Easy to use

Aesthetically pleasing

Conductive charge street

HaloIPT: Launched May 2010

Affixed vehicle pad & Transmitter pad

April June

Oct

- Seed funding with Arup & TTF
- Delivered showcase system to Tier 1 (300 mm)
 - London Launch
- Nov EVS25 Showcase

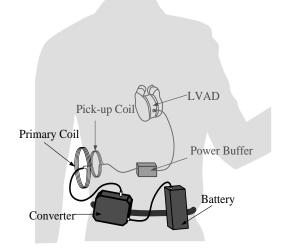
Ongoing OEM Trials

HaloIPT: Sold October 2011

Rolls Royce Phantom 102Ex

7kW charge system > 90% Efficiency

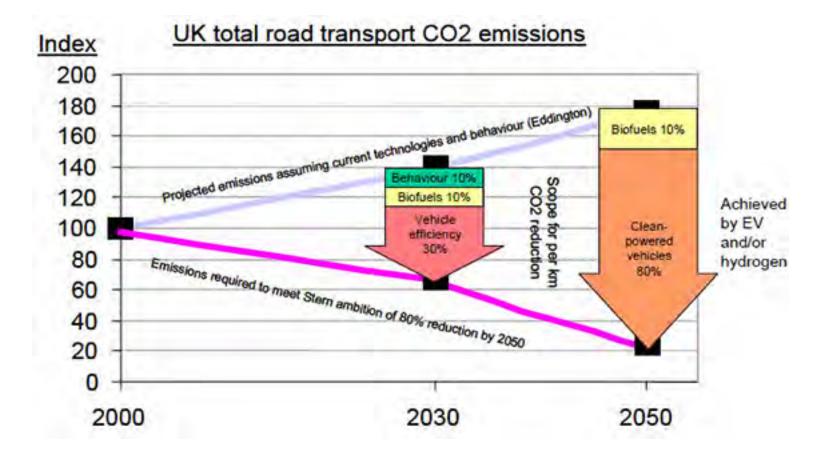
- March Phantom experimental EV
 - Wins Clean Equity Monaco Award "Excellence in the field of environmental technology research"
- May June


July

- Partnership formed with Chargemaster
- Series A investment sought ... offered sale, but with on-going relationship!
- Partnership formed with Drayson Racing for formula1-E race cars
- Sept Shortlisted for Green fleet industry innovation award (London)
 - Wins 2 NZ innovation awards ("Emerging Innovator" & "Design & Engineering")
- Oct Sale completed and research licence relationship defined
- Nov Qualcomm announce 40-50 car trial in UK

Other Start up Companies

- Telemetry bought by Millar research
 - Heart pumps
 - Biomedical sensors
- Power by Proxi
 - Home applications
 - Inductive Slip-rings


A Future Vision

King Review:

The Future is shaped by low carbon vehicle technologies Must have increased electrification of vehicles

New generation required for growth Some more 'low carbon' than others

Coal

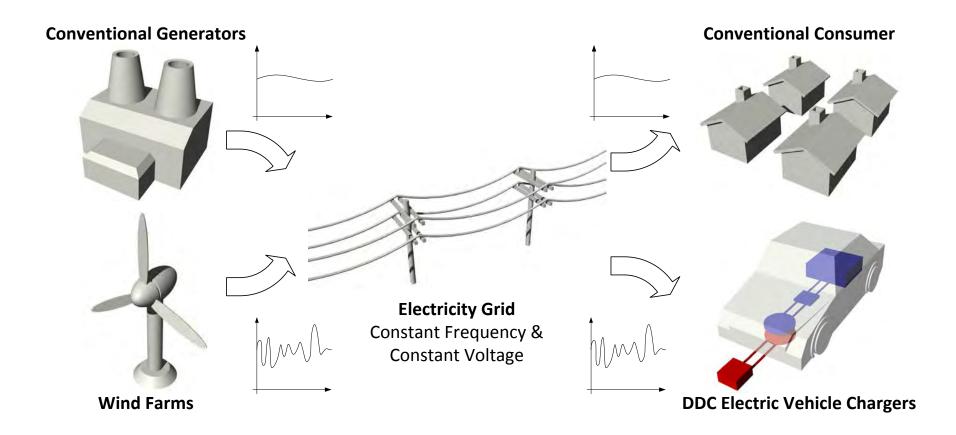
Hydro/storage

Gas CCGT

Onshore Wind Biomass

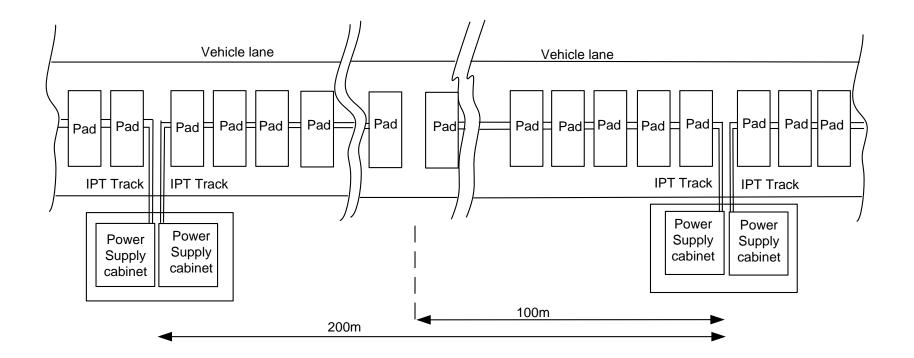
Tidal Stream/Barrage

Solar/CSP


Offshore Wind

Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz

Wave


Battery charging with dynamic demand control (DDC)

The IPT Roadway

• Sequentially Energised Pads under the Vehicle

The IPT Roadway

Dynamic charging allows lower battery weight. Requires gaps 20-40cm

Contacts: ga.covic@auckland.ac.nz or j.boys@auckland.ac.nz

Why have we been successful?

- Partnerships with licensees
 - 7 global licensees and 3 start-up companies
 - Our postgrads now work in these key industries
- Industry driven research
- Funding for blue-sky innovation
 - Imagining the future
 - Attracting the best students
- The world leaders in industrial IPT systems
 - Academically and through our commercial partners