

Climate-resilient Power Systems Planning

Neha Mukhi (Climate Change Specialist)

March 16, 2016

Climate Resilience in Power Systems

Key considerations:

- Current weather risks vs. long-term climate trends
- Especially significant for systems with centralized and interconnected network of generation, transmission and distribution assets spread over a wide geography
- Vulnerability assessment: Supply-side (RE and thermal) and demand-side
- Resilience building approaches: more work needed to inform investment decision-making
 - System wide planning, and
 - Project level design

Challenges:

- Regional climate variations, geographic spread of the system
- Availability of down-scaled data
- Variation in generation mix
- Availability of climate projections and derivatives in a format for supply side impact assessment

Assessing Climate Impacts for Power System

Demand-side

- Raw climate variables
- Climate derivatives (HDD, CDD)
 - Temp-Sensitive Demand and non-TSD
 - Weather-response functions
- Impacts:
 - LDC shifts, increased peak demand, demand-response limitations
- Significant studies available

Supply-side

- Raw climate variables
 - temp, precipitation, sea-level rise, incidence of extreme events, etc.
- Climate derivatives
 - HDD, CDD, coastal and river flooding risk, consecutive dry days, heat wave duration index
- Impacts:
 - Generation (RE & thermal), transmission, distribution
- Less studied: integration of climate projections to assess system-wide impacts

Modeling approach

Stochastic Programming

- uncertainties around climate and conventional parameters (fuel prices/availability, economic growth, outages, etc.) captured *directly* in the planning optimization by specifying probability distributions
- planning optimization seeks an expectedleast-cost generation/transmission plan that will deliver the best performance on average
- Limitation: relies on quantification of risks by explicitly specifying probability distributions (quantified uncertainties)

Robust Decision-making

- when climate models do not converge or other climate data constraints, use a range for future climate variables (e.g. +/-20%) based on current weather
- no probability distributions assigned to indicate deep uncertainty
- solve the model for the entire range of scenarios
- use statistical analyses to identify key conditions under which each strategy satisfies or fails the stated objectives

